From the previous post, we have seen the theory on how the Quantum Fourier Transform is used to crack the RSA. In order to utilize the QFT, we need to implement a circuit for it. In other words, we need to program it.
In this blog post, we will start with the basic definition of the Quantum Fourier Transform and implement a circuit for a 2 qubit system. We will then show the generalization to multiple qubits and implement a circuit for a 4-qubit system which we will use later to implement Shor’s algorithm.
Definition
The Quantum Fourier Transform is defined on its action on the computational basis as
2-Qubit Example
To see how this looks like for a 2-qubit system, let’s write out the terms:
In the last line, we used the binary representation of the integer .
The multiplication, like is done in the following manner:
For example,
The last line above results because for any integer
Going back to the Fourier Transform and expanding the multiplications, we get
We can group the 2nd and 4th terms and factor out the term in the underbrace:
Factor out the term in the underbrace to get
Some Gates We Need For the Circuit
The Hadamard Gate
The first factor from the left is just the Hadamard gate acting on the first qubit since
The Controlled-Phase Rotation
Let’s define the following operator acting on two qubits:
This is called the Controlled-Phase rotation operator. Notice that if either or
is 0, the operator becomes the identity. Only when both are 1 will the operator multiply a phase
.
Using these 2 operators, we can now write the gates for the Fourier Transformation.
Constructing the circuit for a 2-qubit System
Consider the following sequence of operations
If you compare this with the , they are similar except for the order of the bits. Therefore, if you measure
and get a value
, you just need to reverse the bits of the binary representation of
to get the corresponding state in
.
Visualizing the Circuit
This is the QISKit code to visualize the circuit
# 2-qubit circuit from qiskit import Aer import math from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer, plot_histogram from qiskit import BasicAer, execute input_register = QuantumRegister(2,name="qin") c = ClassicalRegister(4) qc = QuantumCircuit(input_register) qc.h(input_register[0]) qc.cu1(math.pi/float(2),input_register[0],input_register[1]) qc.h(input_register[1]) qc.draw(output='mpl')
And here is the result
General Fourier Transform Circuit
The Fourier Transform of an n-qubit system is generalized by its action on the computational basis
where
Constructing the circuit for a 4-qubit System
Using this formula, the Fourier Transform of a 4-qubit system is
Consider the following series of transformations:
This will give you
If you compare this with , they look similar except for the order of the bits. If you define the mapping
and apply it to the transformation above, you’ll get the . Therefore, whatever
you measure using
, just reverse the bits to get the corresponding result using
.
Implementing the 4-Qubit Fourier Transform
The following code in QISKit implements the circuit
# Fourier Transform from qiskit import Aer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer, plot_histogram from qiskit import BasicAer, execute import math input_register = QuantumRegister(4,name="qin") c = ClassicalRegister(4) qc = QuantumCircuit(input_register) qc.h(input_register[0]) qc.cu1(math.pi/float(2),input_register[0],input_register[1]) qc.cu1(math.pi/float(2**2),input_register[0],input_register[2]) qc.cu1(math.pi/float(2**3),input_register[0],input_register[3]) qc.barrier() qc.h(input_register[1]) qc.cu1(math.pi/float(2),input_register[1],input_register[2]) qc.cu1(math.pi/float(2**2),input_register[1],input_register[3]) qc.barrier() qc.h(input_register[2]) qc.cu1(math.pi/float(2),input_register[2],input_register[3]) qc.h(input_register[3]) qc.barrier() qc.draw(output='mpl')
Below is the circuit diagram
Now that we have a circuit for a 4-qubit Fourier Transform, let’s proceed to the next blog post and use it to crack the RSA!